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For complex PKPD models it can be difficult to understand the contribution of each parameter to the
model outputs. In such cases a sensitivity analysis can be a powerful way to investigate which
parameter will have the biggest influence.

A sensitivity analysis can be performed with the R package sensitivity (http://cran.r-project.org
/web/packages/sensitivity/sensitivity.pdf).

Sensitivity analysis for longitudinal data should be based on an unidimensional summary of the data,
such as the integral, i.e. the area under the curve (AUC), the minimum or the maximum value over an
interval, for instance. Such quantities can easily be computed with the function exposure
(http://simulx.webpopix.org/mixr/exposure/) of the m1xR package.

Combining the packages mlxR and sensistivity is therefore a powerful solution for sensitivity
analysis of PKPD models.

library(sensitivity)

We will consider a basic one-compartement PK model for oral administration. The sensitivity analysis
will be based on the exposure at steady state, when repeated doses of 5 mg are given every 12 hours.

The model and the design are defined in a function which returns either AUC, Cmax or Tmax according
to the quantity used for the sensitivity analysis.

The PK parameters ka, V and k are the input arguments of this function.
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sensModel <- function(x){

myModel <- inlineModel(

[ LONGITUDINAL]

input = {ka, V, k}
EQUATION:

Cc = pkmodel(ka, V, k)
")

N <- dim(x)[1]

X <- cbind((1:N),x)

p <- list(name=c("ka", "Vv", "k"),
colNames=c("id", "ka", "v", "k"),

value=x)
res <- exposure(model = myModel,
parameter = p,
output = list(name="Cc", time="steady.state"),

treatment = list(tfd=0, ii=12, amount=5))

# For computing the exposure during the first dose interval, set
output = List(name="Cc", time=c(0,12, by=1090)),
# treatment = Llist(time=0, amount=5),

H*

if (i.out=="tmax"){
r <- res$Cc$tmax

}else if(i.out=="cmax"){
r <- res$Cc$cmax

}else if(i.out=="auc"){
r <- res$Cc$auc

}else if(i.out=="all"){
r <- res$Cc

}

return(r)

If we want to see, for instance, the impact of ka on the exposure at steady state, we can use this
function with two different sets of PK parameters (ka = 0.2, V =10, k= 0.2 and ka = 0.5,
V =10, k = 0.2) and return the output of exposure by setting i.out to “all”.

i.out <- "all"
r <- sensModel(matrix(c(0.2,0.5,10,10,0.2,0.2),nrow=2))
print(r)

##  id t1 t2 step auc tmax cmax tmin cmin
## 1 1 36 48 0.1212121 2.498084 39.75757 0.2568232 36 0.13130065
## 2 2 36 48 0.1212121 2.499413 38.78788 0.3174729 36 0.08100781

We can see that changing the value of ka from 0.2 to 0.5 doesn’t modify the area under the curve



(auc) but impacts the time at which the maximum concentration is observed (tmax).

For a more exhaustive sensitivity analysis, let us use now the fast99 function which implements the
so-called extended-FAST method (Saltelli et al. 1999).

Here, ka takes its values between 0.2 and 0.5, V between 5 and 10, and k between 0.05 and 0.1.

Sensitivity analysis is first based on AUC.

11 <- list(min = 0.2, max = 0.5)
12 <- list(min = 5, max = 10)
13 <- list(min = 0.05, max = 0.1)

i.out <- "auc
x <- fast99(model = sensModel, factors = 3, n = 500,

g = "qunif", q.arg = 1list(11,12,13) )
print(x)

##

## Call:

## fast99(model = sensModel, factors = 3, n = 500, q = "qunif", g.arg = list(l1, 12,
13))

#it

## Model runs: 1500

#it

## Estimations of the indices:
H#it first order total order
## X1 2.217184e-06 0.002148368
## X2 4.911908e-01 0.515163373
## X3 4.846578e-01 0.508640147
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Sobol indices measure the contributions of each PK parameter to the variability of AUC. A Sobol
index of zero means that the variance of the parameter has no contribution on the variance of the
output and a Sobol index of one means that the variance in the output is 100% dependent on the
variance of the parameter.

This index is almost 0 for ka but is significantly different from 0 for both V and k

If we now use T'max instead of AUC for our sensitivity analysis, we see that it’s ka which explains
almost all the variability of Tmax.

i.out <- "tmax"

x <- fast99(model = sensModel, factors = 3, n = 500,
g = "qunif", q.arg = 1list(11,12,13) )

print(x)

#H#

## Call:

## fast99(model = sensModel, factors = 3, n = 500, q = "qunif", g.arg = list(11, 12,
13))

#i

## Model runs: 1500

#i

## Estimations of the indices:
## first order total order
## X1 9.437639e-01 0.955043814
## X2 2.508492e-05 0.005986033
## X3 4.422586e-02 0.053724432
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Several methods are available in the package sensitivity. sobolEff implements the Monte Carlo
estimation of the Sobol’ sensitivity indices using the asymptotically efficient formulas in section 4.2.4.2



of Monod et al. (2006).

We need a function that randomly draws PK parameters uniformly distributed in given intervals.

mySim <- function(r,n){
M <- length(r)
X <- data.frame(matrix(runif(M * n), nrow = n))
for (m in (1:M)){
rm <- r[[m]]
X[,m] <- X[,m]*(rm$max-rm$min) + rm$min
}
return(X)

Monte Carlo methods for estimating the Sobol indices use two random samples X1 and X2 of the PK
parameters.

X1 <- mySim(1list(11,12,13),n=200)

X2 <- mySim(1list(11,12,13),n=200)

X <- sobolEff(model=sensModel, X1=X1, X2=X2, order=1, nboot=500)
print(x)

#H#

## Call:

## sobolEff(model = sensModel, X1 = X1, X2 = X2, order = 1, nboot = 500)
#H#

## Model runs: 800

#H#

## Model variance: 0.1170334

#H#

#H#

#H#

## Sobol indices

#it original bias std. error min. c.i. max. c.i.
## X1 0.943025976 -0.0008729919 0.005998836 ©0.9324971 0.9554689
## X2 -0.001944416 -0.0046449422 0.075180761 -0.1409830 0.1575722
## X3 0.033537556 -0.0049911837 0.074359767 -0.0981761 0.1970709

plot(x, ylim=c(-0.2,1))
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